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Abstract: It is proved that if the calculation of the Collatz function 𝐶(𝑛) starts with odd numbers 

of the form 6𝑚 ± 1,   𝑚 ∈ ℕ, then at each iteration the integer will have the form 6𝑛 ± 1 or will 

be equal to 1. Further, it is proved that during the reverse calculation by the formula ((6𝑛 ±

1) ∙ 2𝑞 − 1)/3, increasing the exponent of two by 1 at each iteration, then each number of the 

form 6𝑛 ± 1 will correspond to an infinite number of alternating integers of the form 3𝑛, 6𝑚 −

1 and 6𝑚 + 1 which are the preceding numbers. Then it is shown that if you build a graph by 

connecting the numbers 6𝑛 ± 1 with their previous numbers, you get a tree graph. A graph tree, 

each vertex of which corresponds to numbers of the form 6𝑚 ± 1, is a proof of the Collatz 

conjecture, since any of its vertices will be assigned 1. 
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1 Introduction 

The Collatz conjecture, also known as the 3 𝑛 + 1problem, the Syracuse problem, is one of the 

unsolved problems in mathematics. The following papers devoted to the 3 𝑛 + 1 problem [1, 2, 3, 

4] can be noted. The book [5] provides a proof of the correctness of the Collatz conjecture for 

natural numbers, as well as the absence of cycles, except for the known three cycles, of the Collatz 

function for negative integers. 

The Collatz function 𝐶(𝑛) is defined on natural numbers as follows: 

(1.1) 𝐶(𝑛) = {
𝑛 2,   𝑖𝑓   𝑛 −⁄ 𝑖𝑠 𝑒𝑣𝑒𝑛,

3𝑛 + 1,   𝑖𝑓   𝑛 − 𝑖𝑠 𝑜𝑑𝑑.
     

To explain the Collatz conjecture, we take any natural number 𝑛, if it is even, then divide it 

by 2, and if it is odd, then multiply by 3 and add 1 (we get 3 𝑛 + 1). We perform the same 

operations with the resulting number, and so on. The Collatz conjecture is that whatever initial 

number n is taken, sooner or later we will get it. 

2 Start number 

By the condition of the conjecture, the calculation of the Collatz function can be started from any 

natural number. However, it is obviously more efficient to start with an odd number, since any 

even number when divided by 2 (one or more times) will turn into an odd number. 

Since odd numbers can be divided into odd numbers that are divisible by 3 and odd numbers that 

are not divisible by 3, the following question arises: 
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Question 1. What odd numbers are more efficient to start the calculation with? 

It is known that all-natural numbers, with the exception of 1, can be represented by the formulas: 

1) 3𝑛;  2) 3𝑛 − 1; 3) 3𝑛 + 1, where 𝑛 = 1, 2, 3 … . It is also known that all odd numbers 

indivisible by 3 can be represented as 6𝑚 − 1; 6𝑚 + 1, where 𝑚 = 1, 2, 3 …  . 

If odd numbers of the form 3𝑛 are multiplied by 3 and 1 is added, then it is obvious that the 

result will be numbers of the form 3𝑛 + 1. Moreover, if a number having the form 3𝑛 + 1is odd, 

then, of course, it will be a number of the form 6𝑚 + 1. And if a number of the form 3𝑛 + 1 is an 

even number, then, when dividing by 2 (one or more times) until an odd number is obtained, a 

number of the form 6𝑚 − 1or 6𝑚 + 1is formed, since a number of the form 3𝑛 + 1 is not divisible 

by 3 . 

Thus, it can be argued that all-natural numbers that are multiples of 3 through one operation 

(3𝑛)3 + 1, and division by certain powers of two, in the case of an even number, turns into odd 

numbers of the form 6𝑚 − 1 and 6𝑚 + 1. The exceptions are the numbers, which after the 

operation (3𝑛)3 + 1will be equal to the power of two. 

From the above, it follows that the calculation of the Collatz function is more efficient to 

start with odd numbers that look like 6𝑚 − 1or 6𝑚 + 1. 

Now let's answer the following question: 

Question 2. What kind of numbers are formed from numbers of the form 6𝑚 − 1 and 6𝑚 + 1 as 

a result of calculating the Collatz function? 

It is clear that all numbers of the form 6𝑚 − 1 and 6𝑚 + 1 are odd numbers of the form 3𝑛 − 1 

or 3𝑛 + 1, since they are not multiples of 3. If you multiply such numbers by 3 and add 1, then it 

is natural to get even numbers of the form 3𝑚 + 1. And when dividing even numbers of the form 

3m + 1 by two (one or more times) until an odd number is obtained, then the resulting odd numbers 

will look like 6𝑛 − 1 or 6𝑛 + 1, since numbers of the form 3𝑚 + 1are not divisible by 3. 

It follows from the above that as a result of calculating the Collatz function based on numbers 

of the form 6𝑚 − 1and 6𝑚 + 1, numbers of the form 6𝑛 − 1 or 6𝑛 + 1 are formed, i.e. number 

does not change. 

Note. Different letters m and n are used in the notation of numbers of the same form 6𝑛 ∓ 1 and 

6𝑚 ∓ 1 to distinguish between the argument (variable) and the particular value of the Collatz 

function. 



3 
 

Thus, on the basis of the foregoing, we can state that in order to prove the Collatz conjecture, 

it is necessary to establish connections between numbers of the form 6𝑚 ∓ 1 and 1. 

3 Forward and backward calculations 

3.1 Direct calculation 

To establish connections between numbers of the form 6𝑚 ∓ 1 and 1, we first perform a direct 

calculation based on the number 1 and all elements of the set 

(3.1) 𝐾 = {𝑘|𝑘 = 6𝑚 ∓ 1, 𝑚 ∈ 𝑁}. 

The actual number 1 is also an element of the set 𝐾 obtained at 𝑚 = 0, but we decided not 

to associate with the number -1, which is also obtained at m=0, the number 1 is selected from the 

set 𝐾. 

For direct calculation, we use the formula 

(3.2) 𝐶 =
3𝑥+1

2𝑞 ; 𝐶, 𝑥, 𝑞 ∈ ℕ. 

It is not difficult to establish that if 𝑥 = 1, 𝑞 = 2 then 𝐶 = 1. This means that when 

calculating the Collatz function using the number 1, a cycle is formed. By the way, this is the only 

cycle formed when calculating the Collatz function, the proof of which will be given later.  

It follows from what was said in Chapter 2 that if 𝑥 = 3𝑛, 𝑛 ∈ 𝑁 then by formula (3.2) we get 

𝐶 = 6𝑚 ∓ 1, except for the cases when 𝐶 = 1. Obviously, there is only one natural solution for 

every 𝑥 (or 𝑛). It also follows from Chapter 2 that if 𝑥 = 6𝑛 ∓ 1,  then 𝐶 = 6𝑚 ∓ 1, except when 

𝐶 = 1, where 𝑛, 𝑚 ∈ ℕ. In this case, too, there is only one natural solution for every 𝑥 (or two 

solutions for every 𝑛). 

This means that in a direct calculation, a number of the form 6𝑛 ∓ 1 will certainly be 

associated with only one number of the same type, or the number 1. 

3.2 Back calculation 

The reverse calculation of the Collatz function for odd natural numbers is carried out using the 

formula 

(3.3)   𝐶̅ =
𝑥∙2𝑞−1

3
; 𝐶̅, 𝑥, 𝑞 ∈ ℕ. 

If 𝑥 = 1, then there are infinitely many natural solutions such that 𝐶̅ = 3𝑛 and 𝐶̅ = 6𝑛 ∓ 1, 

except for one case when 𝐶̅ = 1, where 𝑛 ∈ ℕ. 
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For formula (3.3), if 𝑥 = 3𝑛,  𝑛 ∈ ℕ, then the inverse Collatz function 𝐶̅ has no natural solution. 

This also proves that the direct calculation of the Collatz function using odd multiples of 3 results 

in a number like 6𝑚 ∓ 1. 

If for the reverse calculation by formula (3.3) we use numbers of the form 𝑥 = 6𝑚 ∓ 1, then there 

are infinitely many natural solutions such that 𝐶̅ = 3𝑛 and 𝐶̅ = 6𝑛 ∓ 1, where 𝑛, 𝑚 ∈ ℕ. 

This means that when calculating backwards, a number of the form 6𝑚 ∓ 1 will certainly 

be associated with infinite numbers of the same form, if you do not take into account numbers that 

are multiples of 3. 

From chapters 3.1 and 3.2 it follows that each element of the set (3.1) certainly has an infinite 

connection with other elements of the same set, and some of them have a connection with 1. This 

means that all elements of the set 𝐾 will be connected with each other using the Collatz function 

and number 1. 

Thus, the essence of the Collatz conjecture is to compare the elements of the set 𝐾 =

{𝑘|𝑘 = 6𝑚 ∓ 1, 𝑚 ∈ 𝑁} to each other and to the number 1, in a special way. 

3.3 Set of predecessor numbers 

It follows from the inverse calculation formula (3.3) that each element of the set (3.1) and the 

number 1 has an infinite number of predecessor numbers, since the power of two q can be increased 

indefinitely, i.e. each element of the set (3.1) and the number 1 has its own set of predecessor 

numbers. 

Definition 1. The number-precursor of a natural number k is a natural number g, if for x=g 

according to the formula (3.2) the number k is obtained. 

For example, 13 is the predecessor of the number 5, since if we take 𝑥 =13 and 𝑞 =3, then by the 

formula (3.2) we get 
3∙13+1

23 = 5. In turn of 5 is the predecessor number for 1. 

The set of predecessor numbers of the elements of the set (3.1) and the number 1 can be 

represented, respectively, by the following formulas 

(3.4) 𝐾𝑔 = {𝑘| 𝑘 = 6𝑚 ∓ 1;   𝑚 ∈ 𝑁} – is the set of numbers of predecessors of one element of 

the set (3.1); 

(3.5) 𝐾1 = {𝑘1| 𝑘1 = 6𝑚 ∓ 1;    𝑚 ∈ 𝑁} - is the set of numbers of predecessors of the number 1. 
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The sets 𝐾𝑔 and 𝐾1 differ from the set 𝐾 in that the elements of the set 𝐾𝑔 and 𝐾1 are numbers 

of the form 𝑘 = 6𝑚 ∓ 1 associated only with one element of the set 𝐾 and the number 1, and the 

elements of the set 𝐾 are all numbers of the form 𝑘 = 6𝑚 ∓ 1. 

In this case, the set of predecessor numbers corresponding to each element of the set (3.1) 

are subsets of the set (3.1). In other words, the union of all sets of predecessor numbers of the 

elements of the set (3.1) and the number 1 forms the set (3.1), i.e. 𝐾 = 𝐾𝐺 ∪ 𝐾1, where 

 𝐾𝐺 = 𝐾5 ∪ 𝐾7 ∪ 𝐾11 ∪ 𝐾13 … . 

Thus, we can assert that any element of the set (3.1) is the predecessor number of only one 

element of the set (3.1) or the number 1, since on the basis of any element of the set (3.1) by 

formula (3.2) it is possible to obtain only one other element of the set ( 3.1) or number 1. 

Note that each set 𝐾𝑔 and set 𝐾1 are disjoint, i.e. the elements of the sets 𝐾𝑔 and 𝐾1 will not 

match. 

This is proved as follows: let two elements belonging to two sets 𝐾𝑔𝑖  and 𝐾𝑔𝑗  be equal, then 

we get the following equality 

(6𝑚1∓1)∙2𝑞1−1

3
=

(6𝑚2∓1)∙2𝑞2−1

3
  or 

(3.6) 
6𝑚1∓1

6𝑚2∓1
=

2𝑞2

2𝑞1
. 

The last equality does not have a solution in integers, since the right side of the equality is 

equal to an even number or 1 (if 𝑞1 ≤ 𝑞2), and the left side of the equality is equal to an odd 

number or non-integer, since 6𝑚1 ∓ 1 ≠ 6𝑚2 ∓ 1. It is obvious that (3.6) does not have a solution 

in integers even for 𝑞1 > 𝑞2. 

It is easy to prove that the elements of the set 𝐾1 are not contained in any set 𝐾𝑔, since, 

1∙2𝑞1−1

3
≠

(6𝑚∓1)∙2𝑞2−1

3
  or 

(3.7)   
1

6𝑚∓1
≠

2𝑞2

2𝑞1
. 

Inequality (3.7) is true for 𝑞1 ≤ 𝑞2 and 𝑞1 > 𝑞2. 

Appendix 1 contains Tables 1 and 2, in which the elements of the set (3.1) and their 

predecessor numbers, as well as the predecessors of the number 1, are represented by arithmetic 
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progression formulas. The possibility of representing the elements of the set (3.1) and their 

predecessor numbers by an arithmetic progression confirms the interconnectedness of all Collatz 

numbers and the number 1. 

4 Collatz function graph 

4.1 Micrograph 

It follows from Chapters 3.1 and 3.2 that each element of the set (3.1) can be represented as 

a micrograph, and each micrograph is connected from above to infinite elements of the set (3.1), 

and from below to only one element of the set (3.1) or the number 1. 

Definition 2. A micrograph is a graph consisting of one vertex and edges connecting the vertex of 

the micrograph with other vertices. 

To explain what has been said in more detail, we take any element of the set (3.1) or the 

number 1, they correspond to the variable 𝑥 in formulas (3.2) and (3.3), then using formula (3.2) 

we first perform a direct calculation, then we get one number of the form 6𝑛 ∓ 1 or number 1. 

After that, using the same element, we will carry out the reverse calculation according to the 

formula (3.3), then, if we increase the power of two q, we will get an infinite number of numbers 

of the form 6𝑚 ∓ 1. The number 1 is also a micrograph, however, unlike other vertices, it has a 

lower edge directed towards itself, i.e. it has a contour. 

  This can be represented graphically as follows: 

 

Figure 1. Micrographs, with two pairs of upper edges: 𝑘− = 6𝑚 − 1 и  𝑘+ = 6𝑚 + 1. 

Note: the indices (-) and (+) in the letters of the vertices correspond to the sign of the 

formulas. 

In Figure 1, for each micrograph, two pairs of edges are shown, their actual number is 

infinite, however, for the presentability of the graph, a limit should be set in advance on the number 
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of edges for each vertex, as well as on the number of iterations, i.e. the height of the tree and its 

density should be limited. In particular, you should limit the number of iterations in the reverse 

calculation, because otherwise the tree will grow indefinitely. 

The reason for showing the upper edges in pairs is described in [5], but it does not affect the 

proof of the Collatz conjecture, so we accept them without explanation. 

4.2 Graph tree 

Further, if we combine the micrographs described in chapter 4.1, we get a tree graph similar to 

Figure 2, 

 

Figure 2. Graph-tree, in which the number of upper edges is limited to 4. 

Note: 1) Vertex 1 also has four top edges and one bottom edge, but for vertex 1, the bottom edge 

and one top edge form a contour; 2) For presentability, the top two edges of vertex 1 are shown 

without continuation, i.e. they are cut off. 

Note that we use the terms top edges and bottom edge instead of using the terms incoming 

arc and outgoing arc, because in our case the direction of the arc depends on the calculation 

method. For example, if direct calculation is used according to the formula (3.2), then all arcs will 

be directed downwards, and if the reverse calculation method is used according to formula (3.3), 

then all arcs will be directed upwards. 

Figure 3 shows a directed tree graph containing even numbers (2n), multiples of 3 (3n) and 

non-multiples of 3 ( 𝑘− and 𝑘+) odd numbers. In this graph, all arcs are directed downwards, 

because formula (3.2) is used to calculate the nodes of the graph. 
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Figure 3. A directed tree graph containing even numbers (2n), multiples of 3 (3n), and non-

multiples of 3 ( 𝑘− and 𝑘+) odd numbers. 

It follows from Figure 2 that the size of the graph tree corresponding to the Collatz function 

for positive integers is determined by the number of edges at one vertex 𝑉 and the iteration level 

𝐿, so we will use the sign 𝐺𝑉,𝐿 to show the size of the graph. It should be clear that for the graph-

tree corresponding to the Collatz function, 𝑉 = ∞, 𝐿 = ∞, since the graph-tree is built on the basis 

of all elements of the set (3.1). 

The calculation of the predecessor numbers of the number 1 will be called the first level of 

the iteration 𝐿 = 1, the calculation of the predecessor numbers of numbers that are the predecessor 

numbers of the number 1 will be called the second level of the iteration 𝐿 = 2, and so on. 

4.3 Algorithm for constructing graph-tree 

The Collatz graph can be built in different ways: 1) by combining pre-formed micrographs; 2) 

according to the "top-down" method based on a given limit number; 3) according to the “bottom 

to top” method, with a different number of upper edges of vertices or an equal number of upper 

edges; 4) in a mixed way. 

  At the same time, in our opinion, the most convenient and understandable way is to build 

a Collatz graph according to the “bottom-up” method with an equal number of upper vertex edges, 

since in this case the tree graph will be fractal. 
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In view of the foregoing, we will describe below the construction of a graph according to 

the “bottom-up” method with an equal number of upper vertex edges. 

Exercise. It is required to construct the Collatz graph 𝐺4,4 for positive integers. This means that 

each vertex of the graph must have four edges, and the iteration level must be 4. 

To build a graph-tree 𝐺4,4 we use the inverse calculation formula (3.3), then based on the 

three predecessor numbers of the number 1 (the number 1 forms a loop, so only 3 branches will 

grow from the number 1, instead of 4) we get 12 vertices, then on based on 12 vertices, we get 48 

vertices, etc. In this case, we will get a tree graph similar to the graph shown in Figure 2, but unlike 

it, the two cut edges of vertex 1 continue and will look the same as the first edge of vertex 1. 

At the same time, it is obvious that any pair of vertices of the constructed tree graph 𝐺4,4 will have 

a route, and all of them will be connected to 1. If there were no constraint 𝐿 = 4, the tree graph 

would grow infinitely. 

It should be noted that each subsequent pair of predecessor numbers will be 64 times more 

than the previous pair of predecessor numbers plus 21, i.e. the predecessor numbers grow very 

quickly. For example, the first pair of predecessor numbers of 5 are 13 and 53, and the next pair 

of predecessor numbers are 853 and 3413, which can be represented as 13∙64+21=853 and 

53∙64+21=3413. Details of the patterns of predecessor numbers are given in [5]. It follows from 

the above that it is more practical to build a tree graph by limiting the number of vertex edges to a 

small number. When assigning the size of a graph, it is desirable that the number V, indicating the 

number of upper edges of each vertex, be even, an explanation for this is given in [5]. 

Note that if the tree graph is built in three dimensions, then the graph will be much more 

presentable. 

4.4 Graph Properties 

Based on what was stated in Chapter 4.2, we list the properties of a graph expressing the Collatz 

functions for positive integers: 

1) The graph of the Collatz function for positive integers is a tree, with root 1 and a single contour 

1-1; 

1.1) There is a route between any pair of graph vertices. 
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Obviously, the form of the Collatz graph described in Chapter 4.2 does not depend on the 

boundary numbers 𝑉 and 𝐿, i.e. for any 𝑉 >1 and 𝐿 >1 the Collatz graph will be a tree, so there is 

a route between any pair of graph vertices. 

If we apply the terms of Graph Theory, then the resulting Collatz Function Graph for positive 

integers is a strongly connected directed graph, since there is a (directed) path from any vertex to 

any other in it. In other words, based on any number of the form 6𝑚 ∓ 1 and 1, you can calculate 

any number corresponding to any vertex of the graph, if you know the route between these two 

vertices. 

1.2) There is no cycle in the graph, except for cycle 1-1. 

By definition, a Tree is a connected acyclic graph. Connectivity means the presence of a 

route between any pair of vertices, acyclicity means the absence of cycles. Since the Collatz graph 

is a tree, there will be no contours (loops) in the graph, except for the contour 1-1. 

The proof of the absence of a contour (loop) based on the graph is given in [5], where it is 

shown that the formation of a contour in the Collatz graph is possible only if at least one vertex 

has two lower edges. And this is possible only if for a given natural 𝑥 by formula (3.2) it would 

be possible to obtain two odd integers. Of course, this cannot be, so the contour (or loop) in the 

graph cannot be formed. The work [5] also provides a proof of the absence of cycles, except for 

the known three cycles, for the Collatz function for negative integers. 

2) All elements of the set (3.1) are vertices of the Collatz graph. 

If micrographs are created on the basis of all elements of the set (3.1), then, obviously, all 

these micrographs are connected to each other, since they are all elements of the same set. 

However, suppose that one vertex (one element of the set 𝐾) is not connected with the graph, i.e. 

Let's say there is a single graph. However, a single graph can exist only if there is an element x of 

the set (3.1) that is a solution to the following two equalities: 1) 
3𝑥+1

2𝑞 = 𝑥; 2) 
𝑥∙2𝑞−1

3
= 𝑥. 

Since these equalities have a natural solution only for 𝑥 = 1 and 𝑞 = 2, we can assert that 

there is no single graph. 

If one element of the set (3.1) cannot be unconnected, then the number of separate vertices 

connected to each other must be infinitely many, of course, if any can exist at all. If so, then they 

will certainly be connected with the vertices of the Collatz graph, since the graph 𝐺𝑉,𝐿 for 𝑉 =

∞, 𝐿 = ∞  contains all elements of the set (3.1). The proof of the interconnectedness of all 
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elements of the set (3.1) is also the representation of predecessor numbers by arithmetic 

progression formulas and the Collatz number relationship scheme given in Appendices 1 and 2. 

From the relationship scheme of Collatz numbers and arithmetic progression formulas, it follows 

that any element of the set (3.1) can be calculated based on another element of the set, which 

proves that the vertices of the Collatz graph are strongly connected. 

  The work [5] also provides a proof of the interconnectedness of all elements of the set (3.1) 

by studying numbers of the form 𝑘 = 6𝑚 ∓ 1 and their subsequent numbers of the same form, 

obtained by direct calculation using formula (3.2). 

Conclusion 

Thus, we have proved that the graph of the Collatz function for positive integers is a tree with root 

1 and contains all elements of the set 𝐾 = {𝑘|𝑘 = 6𝑚 ∓ 1, 𝑚 ∈ 𝑁}. This means that the Collatz 

conjecture is correct and has been proven. 
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Appendix 1. Representation of predecessor numbers by arithmetic progression formulas 

When considering the relationship between the elements of the set (3.1) and their 

predecessor numbers, it is convenient to consider them as different sets 𝐺 and 𝐾, although in fact 

we show the relationship between the elements of the set 𝐾 and the number 1, since 𝐺 = 𝐾. As a 

result of the study of the elements of the set (3.1) and their predecessor numbers calculated by 

formula (3.3), the regularity described below is established. 

The elements of the set 𝐺, taking into account their frequency, can be divided into 6 types, 

which are determined by the six formulas of the arithmetic progression given in the second column 

of Table 1.1, and the first pairs of predecessor numbers 𝑘 = 6𝑚 ∓ 1 calculated by formula (3.3) 

can be divided into 12 types, which are also determined by arithmetic progression formulas. 

Arithmetic progression formulas corresponding to 6 types of elements 𝑔 = 6𝑛 ∓ 1  and 12 types 

of elements 𝑘 = 6𝑚 ∓ 1, respectively, of sets 𝐺 and 𝐾 are given in Table 1. 

Table 1.1. Formulas for calculating the first two pairs of predecessor numbers 

     Formulas of predecessor numbers 𝑘∓ = 6𝑛 ∓ 1 with exponents of 2 given 

below 

 g 𝑞 =1 𝑞 =2 𝑞 =3 𝑞 =4 𝑞 =5 𝑞 =6 

0 1  1  5   

1 5 + 18𝑡   13 + 48𝑡  53 + 192𝑡  

2 7 + 18𝑡    37 + 96𝑡  149 + 384𝑡 

3 11 + 18𝑡 7 + 12𝑡  29 + 48𝑡    

4 13 + 18𝑡  17 + 24𝑡    277 + 384𝑡 

5 17 + 18𝑡 11 + 12𝑡    181 + 192𝑡  

6 19 + 18𝑡  25 + 24𝑡  101 + 96𝑡   

 

Note. The number 1 on the first interval q: 1, 2, 3, 5, 6 corresponds to two predecessor 

numbers 1 and 5, which are given on the line with the serial number 0. 

Table 1.2 shows the elements of the set (3.1) and their predecessor numbers calculated by 

the formulas of arithmetic progression, which are also elements of the set (3.1). The number 1 and 

its predecessor numbers are shown on the top line. Table 1.2, unlike Table 1.1, shows formulas for 

four predecessor numbers for each element of set (3.1). Table 1.1 and 1.2 shows the 

interconnectedness of all elements of the set (3.1) and the number 1. 
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Table 1.2. Calculating predecessor numbers with arithmetic progression formulas 

    3+12t 1+24t 13+48t 5+96t 53+192t 21+384t 213+768t 85+1536t 853+3072t 341+6144t 3413+12288t 1365+24576t 

    7+12t 9+24t 29+48t 37+96t 117+192t 149+384t 469+768t 597+1536t 1877+3072t 2389+6144t 7509+12288t 9557+24576t 

    11+12t 17+24t 45+48t 69+96t 181+192t 277+384t 725+768t 1109+1536t 2901+3072t 4437+6144t 11605+12288t 17749+24576t 

                            

g   1 2 3 4 5 6 1 2 3 4 5 6 

1    1   5   21   85   341   1365 

5 1 3   13   53   213   853   3413   

7 2   9   37   149   597   2389   9557 

11 3 7   29   117   469   1877   7509   

13 4   17   69   277   1109   4437   17749 

17 5 11   45   181   725   2901   11605   

19 6   25   101   405   1621   6485   25941 

23 1 15   61   245   981   3925   15701   

25 2   33   133   533   2133   8533   34133 

29 3 19   77   309   1237   4949   19797   

31 4   41   165   661   2645   10581   42325 

35 5 23   93   373   1493   5973   23893   

37 6   49   197   789   3157   12629   50517 

41 1 27   109   437   1749   6997   27989   

43 2   57   229   917   3669   14677   58709 

47 3 31   125   501   2005   8021   32085   

49 4   65   261   1045   4181   16725   66901 

53 5 35   141   565   2261   9045   36181   

55 6  73  293  1173  4693  18773  75093 

 

Please note that this is only the initial part of the table of infinite size, both rows and columns of the table are infinite. 
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Appendix 2. Relationships between Collatz numbers 

2.1. Relationships between Collatz numbers 

As shown in Appendix 1, numbers, depending on their predecessor numbers, can be divided into 

6 types, with each type of numbers corresponding to two types of predecessor numbers. The six 

types of numbers are expressed by the following arithmetic progression 

(2.1)  𝑔𝑖  = 𝑝𝑖  + 18𝑡, where 𝑝𝑖 = 5, 7, 11, 13, 17,19.     

Note. In Appendix 1, the sixth type of numbers was expressed by the arithmetic progression 

formula 𝑔6 = 1 + 18𝑡, which made it possible to show the numbers associated with the number 

1. If we use formula (2.1), then the sixth type of number will be obtained with 𝑝𝑖 =19 and 𝑡 =0, 

i.e. in this case, in order for all numbers to be of the form 6𝑛 ∓ 1, we excluded the number 1. 

Next, we will show that all Collatz numbers are associated with the initial six types of 

numbers of the form𝑔𝑖 = 6𝑛 ∓ 1 and twelve predecessor numbers corresponding to the first 

power-of-two interval. In other words, it will be shown below that all Collatz numbers are related 

to the numbers given in Table 1.1. 

It should be noted that in this chapter we show the relationship of the elements of the set (3.1) and 

two pairs of predecessor numbers for each element, although the number of predecessor numbers 

is infinite. At the same time, if necessary, it is possible to show the connection of other predecessor 

numbers with other elements of the set (3.1) using the method described below. 

Figure 2.1 shows a diagram of the relationship between numbers of the form 𝑔𝑖 = 6𝑛 ∓ 1  and the 

first members of the arithmetic progression 𝑝𝑖, as well as two pairs of initial predecessor numbers 

𝑘𝑖1 and 𝑘𝑖2 and other predecessor numbers 𝑘𝑖1𝑡 and 𝑘𝑖2𝑡. 

𝑘𝑖1  𝑝𝑖 𝑘𝑖2  𝑝𝑖 

       

      

   𝑘𝑖1𝑡  𝑔𝑖 𝑘𝑖2𝑡  𝑔𝑖 

 

Figure 2.1. Diagram of the relationship between numbers and predecessor numbers 

As follows from the diagram, based on the first numbers of the arithmetic progression 𝑝𝑖 

(5, 7, 11, 13, 17,19), you can calculate other numbers 𝑘𝑖1,  𝑘𝑖2, 𝑘𝑖1𝑡,  𝑘𝑖2𝑡 and 𝑔𝑖, if the multiplier 

𝑡 (𝑡 = 0, 1, 2, …). 
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It is known that the calculation of the Collatz function is carried out in several iterations, and at 

each subsequent iteration, the number obtained at the previous iteration is used as an argument. 

This means that when calculating the Collatz function, the status of the numbers 𝑘𝑖𝑗 and 𝑔𝑖 will 

change. 

With such an operation, in some cases there are difficulties in establishing the types of numbers, 

therefore, in Table 2.1. the subtypes of the above 6 types of numbers and their preceding numbers 

are given. 

Table 2.1 shows the transition of the formulas for 𝑘𝑖𝑗 (given in column 2 of the table) to the 

formulas g_i (given in column 9 of the table), that is, to the formulas of the arithmetic progression 

(2.1). 

The formulas for the 𝑘𝑖𝑗𝑙 subtypes in Table 2.1 are derived as follows. From the sequence of 

numbers obtained by the above 12 formulas of the arithmetic progression 𝑘𝑖𝑗, 𝑖 = 1, 2, 3, 4, 5, 6 ; 

𝑗 = 1, 2, we find the remainder modulo 18. Then each 𝑘𝑖𝑗   formula will fall into three subtypes, 

i.e. for 3 formulas. Therefore, in this case, instead of 12 𝑘𝑖𝑗  formulas, we get 36 formulas of the 

form 𝑘𝑖𝑗𝑙  = 𝑝𝑖  + 18𝑡𝑙;  𝑖 = 1, 2, 3, 4, 5, 6 ;  𝑗 = 1, 2;  𝑙 = 1, 2, 3. 

In this case, two formulas 𝑘𝑖𝑗𝑙   will correspond to one formula 𝑔𝑖𝑙, while the form of six formulas 

does not change, only for each pair of formulas 𝑘𝑖𝑗𝑙  there will correspond a formula 𝑔𝑖𝑙  with a 

multiplier 𝑡𝑖𝑙, i.e. in this case, the factor 𝑡𝑖𝑙 of the formula 𝑔𝑖𝑙 depends on 𝑘𝑖𝑗𝑙, i.e. 𝑡𝑖𝑙 = 𝑓(𝑘𝑖𝑗𝑙). 

Thus, the representation of numbers 𝑘𝑖𝑗  in the form 

(2.2)  𝑘𝑖𝑗𝑙  = 𝑝𝑖  + 18𝑡𝑖𝑗𝑙,  

as well as numbers 𝑔𝑖𝑙 in the form 

(2.3)  𝑔𝑖𝑙  = 𝑝𝑖  + 18𝑡𝑖𝑙,   

allows you to establish more accurate links between the numbers 𝑘𝑖  and 𝑔𝑖, through direct links 

of their subtypes 𝑘𝑖𝑗𝑙 and 𝑔𝑖𝑙. 

The exact connection between the numbers 𝑘𝑖𝑗𝑙 and 𝑔𝑖𝑙 is provided by the factors of these numbers 

𝑡𝑖𝑗𝑙   and 𝑡𝑖𝑙, which are determined by the formulas 

(2.4)  𝑡𝑖𝑗𝑙 = 𝑎𝑖𝑗𝑙  + 𝑏𝑖𝑗 ∙ 𝑠;     
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(2.5)  𝑡𝑖𝑙 = 𝑐𝑖𝑙  + 3𝑠,  

where 𝑠 = 0, 1, 2, … - multiplier coefficient (calculation number 𝑔𝑖 minus 1); 𝑐𝑖𝑙 = 0, 1, 2.  

Since 𝑙 only takes three values (1, 2, 3), i.e. there are three subtypes 𝑘𝑖, and any factor starts from 

0 and takes natural values, then the formula for the factor of the number 𝑔𝑖𝑙 has only three types 

𝑡𝑖1 = 0 + 3𝑠, 𝑡𝑖2 = 1 + 3𝑠, 𝑡𝑖3 = 2 + 3𝑠. 

As can be seen from formulas (2.2) and (2.3), as well as (2.4) and (2.5), only if the coefficient s is 

equal, the two numbers 𝑘𝑖𝑗𝑙  and 𝑔𝑖𝑙  will correspond to each other. 

The 𝑠 coefficient formulas were established as follows. 

First, after establishing the subtypes 𝑘𝑖𝑗𝑙  by finding the residuals by divisor 18 from the sequence 

of numbers 𝑘𝑖𝑗, the multiplier 𝑡𝑖𝑗𝑙  is calculated. To do this, the calculated residuals by the divisor 

18 are subtracted from the sequence of numbers 𝑘𝑖𝑗, then divided by the number 18, then as a 

result of such operations, the multiplier 𝑡𝑖𝑗𝑙 will be obtained. 

After that, knowing that each 𝑘𝑖𝑗𝑙  corresponds to the number 𝑔𝑖𝑙, comparing the numbers 𝑘𝑖𝑗𝑙  and 

𝑔𝑖𝑙, we find the coefficient s corresponding to them. Further, we represent the factor 𝑡𝑖𝑗𝑙  in the 

form of formula (2.4). A system of 36 formulas showing the relationships between the numbers 𝑘𝑖  

and 𝑔𝑖, as well as their subtypes 𝑘𝑖𝑗𝑙 and 𝑔𝑖𝑙, is shown in Table 4.1. 
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Table 2.1. System of 36 formulas for Collatz functions 

Note: s = 0, 1, 2, ...  

#𝒌𝒊𝒋 𝒌𝒊𝒋 𝒌𝒊𝒋𝒍 𝒕𝒊𝒋𝒍 #𝒌𝒊𝒋𝒍 𝒈𝒊𝒍 𝒕𝒊𝒍 #𝒈𝒊𝒍 𝒈𝒊 

1 2 3 4 5 6 7 8 9 

     𝑘111 = 13 + 18𝑡111 0+8s 1.1.1 𝑔11 = 5 + 18𝑡11 0+3s 1.1  

 

𝑔1 = 5 + 18𝑡; 

(1) 

1.1   𝑘11 = 13 + 48𝑡     𝑘112 = 7 + 18𝑡112 3+8s 1.1.2 𝑔12 = 5 + 18𝑡12 1+3s 1.2 

      𝑘113 = 1 + 18𝑡113 6+8s 1.1.3 𝑔13 = 5 + 18𝑡13 2+3s 1.3 

     𝑘121 = 17 + 18𝑡121 2+32s 1.2.1 𝑔11 = 5 + 18𝑡11 0+3s 1.1 

1.2     𝑘12 = 53 + 192𝑡     𝑘122 = 11 + 18𝑡122 13+32s 1.2.2 𝑔12 = 5 + 18𝑡12 1+3s 1.2 

      𝑘123 = 5 + 18𝑡123 24+32s 1.2.3 𝑔13 = 5 + 18𝑡13 2+3s 1.3 

 

     𝑘211 = 1 + 18𝑡211 2+16s 2.1.1 𝑔21 = 7 + 18𝑡1 0+3s 2.1  

 

𝑔2 = 7 + 18𝑡; 

(2) 

2.1     𝑘21 = 37 + 96𝑡     𝑘212 = 7 + 18𝑡212 7+16s 2.1.2 𝑔22 = 7 + 18𝑡2 1+3s 2.2 

      𝑘213 = 13 + 18𝑡213 12+16s 2.1.3 𝑔23 = 7 + 18𝑡3 2+3s 2.3 

     𝑘221 = 5 + 18𝑡221 8+64s 2.2.1 𝑔21 = 7 + 18𝑡1 0+3s 2.1 

2.2 𝑘22 = 149 + 384𝑡     𝑘222 = 11 + 18𝑡222 29+64s 2.2.2 𝑔22 = 7 + 18𝑡2 1+3s 2.2 

      𝑘223 = 17 + 18𝑡223 50+64s 2.2.3 𝑔23 = 7 + 18𝑡3 2+3s 2.3 
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Continuation of Table 2.1 

  𝑘311 = 7 + 18𝑡311 0+2s 3.1.1 𝑔31 = 11 + 18𝑡31 0+3s 3.1  

 

𝑔3 = 11 + 18𝑡; 

(3) 

 

3.1 𝑘31 = 7 + 12𝑡 𝑘312 = 1 + 18𝑡312 1+2s 3.1.2 𝑔32 = 11 + 18𝑡32 1+3s 3.2 

  𝑘313 = 13 + 18𝑡313 1+2s 3.1.3 𝑔33 = 11 + 18𝑡33 2+3s 3.3 

  𝑘321 = 11 + 18𝑡321 1+8s 3.2.1 𝑔31 = 11 + 18𝑡31 0+3s 3.1 

3.2 𝑘32 = 29 + 48𝑡 𝑘322 = 5 + 18𝑡322 4+8s 3.2.2 𝑔32 = 11 + 18𝑡32 1+3s 3.2 

  𝑘323 = 17 + 18𝑡323 6+8s 3.2.3 𝑔33 = 11 + 18𝑡33 2+3s 3.3 

 

  𝑘411 = 17 + 18𝑡411 0+4s 4.1.1 𝑔41 = 13 + 18𝑡41 0+3s 4.1  

 

𝑔4 = 13 + 18𝑡; 

(4) 

4.1 𝑘41 = 17 + 24𝑡 𝑘412 = 5 + 18𝑡412 2+4s 4.1.2 𝑔42 = 13 + 18𝑡42 1+3s 4.2 

  𝑘413 = 11 + 18𝑡413 3+4s 4.1.3 𝑔43 = 13 + 18𝑡43 2+3s 4.3 

  𝑘421 = 7 + 18𝑡421 15+64s 4.2.1 𝑔41 = 13 + 18𝑡41 0+3s 4.1 

4.2 𝑘42 = 277 + 384𝑡 𝑘422 = 13 + 18𝑡422 36+64s 4.2.2 𝑔42 = 13 + 18𝑡42 1+3s 4.2 

  𝑘423 = 1 + 18𝑡423 58+64s 4.2.3 𝑔43 = 13 + 18𝑡43 2+3s 4.3 
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Continuation of Table 2.1 

  𝑘511 = 11 + 18𝑡511 0+2s 5.1.1 𝑔51 = 17 + 18𝑡1 0+3s 5.1  

 

𝑔5 = 17 + 18𝑡; 

(5) 

5.2 𝑘51 = 11 + 12𝑡 𝑘512 = 5 + 18𝑡512 1+2s 5.1.2 𝑔51 = 17 + 18𝑡2 1+3s 5.2 

  𝑘513 = 17 + 18𝑡513 1+2s 5.1.3 𝑔51 = 17 + 18𝑡3 2+3s 5.3 

  𝑘521 = 1 + 18𝑡521 10+32s 5.2.1 𝑔51 = 17 + 18𝑡1 0+3s 5.1 

5.2 𝑘52 = 181 + 192𝑡 𝑘522 = 13 + 18𝑡522 20+32s 5.2.2 𝑔51 = 17 + 18𝑡2 1+3s 5.2 

  𝑘523 = 7 + 18𝑡523 31+32s 5.2.3 𝑔51 = 17 + 18𝑡3 2+3s 5.3 

 

  𝑘611 = 7 + 18𝑡611 1+4s 6.1.1 𝑔61 = 19 + 18𝑡11 0+3s 6.1  

 

𝑔6 = 19 + 18𝑡; 

(6) 

6.1 𝑘61 = 25 + 24𝑡 𝑘612 = 13 + 18𝑡612 2+4s 6.1.2 𝑔62 = 19 + 18𝑡12 1+3s 6.2 

  𝑘613 = 1 + 18𝑡613 4+4s 6.1.3 𝑔63 = 19 + 18𝑡13 2+3s 6.3 

  𝑘621 = 11 + 18𝑡621 5+16s 6.2.1 𝑔61 = 19 + 18𝑡11 0+3s 6.1 

6.2 𝑘62 = 101 + 96𝑡 𝑘622 = 17 + 18𝑡622 10+16s 6.2.2 𝑔62 = 19 + 18𝑡12 1+3s 6.2 

  𝑘623 = 5 + 18𝑡623 16+16s 6.2.3 𝑔63 = 19 + 18𝑡13 2+3s 1.3 
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2.2. Examples 

Let's show the connections between the numbers 𝑘𝑖𝑗𝑙 and 𝑔𝑖𝑙, which belong to the same subtype. 

Example 2.1. Let two numbers 𝑘 = 17 and 𝑔 = 13 be given, which are directly related to each 

other through the function 𝑔 = (3𝑘 + 1)/2𝑞, i.e. if the number 17 is used to calculate the Collatz 

function, then as a result of the calculation we get the number 13. 

According to Table 2.1, the numbers 𝑘 = 17 and 𝑔 = 13  are related to each other through their 

following subtypes 𝑘411 = 17 (𝑡411 = 0, 𝑠 = 0) и 𝑔41 = 13 (𝑡41 = 0, 𝑠 = 0). 

Next, we will show how these two numbers 17 and 13 are related to other numbers related to these 

types of numbers, for this we will take the multiplier equal to 𝑠 = 1, then using the formulas given 

in Table 4.1 we will obtain the following numbers 

𝑘411 = 17 + 18𝑡411; 𝑠 = 1 → 𝑡411 = 0 + 4 ∙ 1 = 4; 𝑘411 = 17 + 18 ∙ 4 = 89. 

The number 𝑘411 = 89,  with 𝑠 = 1 corresponds to the number 𝑔41 = 13 + 18𝑡41, with the 

multiplier 𝑡41 = 0 + 3 ∙ 1 = 3; 𝑔41 = 13 + 18 ∙ 3 = 67. 

Next, starting from the number 89, we calculate the Collatz numbers, then combine the resulting 

numbers into a common chain and get: 

89→67→101→19→29→11→17→13→ 5→ 1. 

As you can see, the numbers 89 and 67 form a common chain with the numbers 17 and 13. 

Example 2.2. Of course, the larger the coefficient of the multiplier s, the greater will be the value 

of the numbers corresponding to the coefficient, so the length of the chain of numbers and the 

number of calculations is also greater. Below we will show an example based on the above 

numbers with 𝑠 = 4. 

𝑘411 = 17 + 18𝑡411; 𝑠 = 4 → 𝑡411 = 0 + 4 ∙ 4 = 16; 𝑘411 = 17 + 18 ∙ 16 = 305. 

The number 𝑘411 = 305,  at 𝑠 = 4 corresponds to the number 𝑔41 = 13 + 18𝑡41, with the 

multiplier 𝑡41 = 0 + 3 ∙ 4 = 12 therefore 𝑔41 = 13 + 18 ∙ 12 = 229. 

Further, if we calculate the Collatz numbers starting from the number 305, then link the resulting 

numbers, we get the following chain of numbers: 

305→ 𝟐𝟐𝟗 → 43 → 65 → 49 → 37→7→11→17→13→ 5→ 1. 
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As you can see, the numbers 305 and 229 also form a common chain with the numbers 17 and 13. 

It should be noted that sometimes pairs of numbers belonging to the same subtype do not always 

form a common chain of numbers. This is due to the fact that for different coefficients s the 

subtypes of numbers differ, in addition, changing the statuses of the numbers k_(ijl ) and g_il will 

lead to an even greater change in the chain of numbers. The above is demonstrated by example 

2.3. 

Example 2.3. Below we show an example based on the above numbers for s = 5. 

𝑘411 = 17 + 18𝑡411; 𝑠 = 5 → 𝑡411 = 0 + 4 ∙ 5 = 20; 𝑘411 = 17 + 18 ∙ 20 = 377. 

The number 𝑘411 =377 corresponds to the number 𝑔41 = 13 + 18𝑡41,  with the factor 𝑡41 = 0 +

3 ∙ 5 = 15 for s = 5, so 𝑔41 = 13 + 18 ∙ 15 = 283. 

Further, if you calculate the Collatz numbers, starting with the number 377, then combine the 

resulting numbers, you get the following chain of numbers: 

377 → 283 → 425 → 319 → 479 → 719 → 1079 → 1619 → 2429 → 911 → 1367 → 2051 → 

3077 → 577 → 433 → 325 → 61 → 23 → 35 → 395 → 53 → 5 → 1. 

In this case, the numbers 377 and 283 do not form a common chain with the numbers 17 and 13, 

although they belong to the same subtype, since there is a branch formed by the number 53, which 

is the predecessor of the number 5, like the number 13. 

Thus, the main meaning of the formulas given in Table 2.1 is that they show that all the numbers 

𝑘𝑖𝑗𝑙    and 𝑔𝑖𝑙 are related to the number 5, which, in turn, is related to the number 1. 


